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Abstract

Wc consider the problem of finding a trellis for a linear block code th~t rninimims  one or more

measures of trellis complexity. ‘J’hc domain of optimization nlay be different ]Jerlnutations  of the same

code, or different codes with the same parameters. Constraints on trellises, including relationships

bctwccn  the minimal trellis of a code and that of the dual code, are used to derive bounds on

co]nplcxity.  We define a partial ordering on trellises: if a trellis is optimu~[l with respect to this

partial ordering, it has the desirable property that it simultaneously rnillinlizes all of the complexity

measures examined. Wc examine properties of such optima] trellises a~ld give examples of optimal

pcr]nutations of codes, most notably the (48,24,12) quadratic residue code.
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1 Introduction

l;very  linear block code can be represented by a lninimal ircllis, originally irltroduced  by llahl ct.

al. [1]) which is a labeled graph that can be used as a template for cJlcodiJIg  or decoding. As shown

by Mcl+licce [26, 27], the minima] trellis simultaneously miJ,inlizes the IJlaXiIllUIn  number of states,

the tots] numbers of vcrticcs  and edges in the trellis, and t]le total n~JJ~lbcrs  c,f additions and path

coJnparisoJm  required for decoding with a Viterbi  a]gorithrr,

A code’s JJliJ)iJna] trellis  is unique as ]ong m the ordering of the code’s symbols is fixed. I]owcver,

diffcrclJt perlJnJtations  of the syJnbols yield diffcreJll  miriirnal trellises. An or)tiJnuIJ~ n~iniJna] trc]lis

for the code is OIIC  which miJliJnizes  a suitable measure of trellis complexity over all possible per-

lnutatioJls  of the code. ‘1’here are no known efficient algorithms for constructilig  optimum minimal

trellises.

Using [27] as a starting point, wc examine properties of the miJlinlal trellis representation of a

code and its dual for a fixed permutation, and use these results to cxa~niJlc  the problem of finding

a pcrlnutation that miJli Jnizcs  one or Inore  trellis complexity measums. Wc extend these results to

the prob]cJn of findiJlg a ~J~iJlimal  complexity trellis  over all codes with the saJnc paraJnctcrs.  Wc

identify certain suff]cicnt coJlditioJls  for a code or a permutation to siJnultaJ~cous]y  nliJlinlize all of

the coIJl])lcxity measures.

Section 2 reviews the subject c)f rJliJJimal  trellises for a fixed pcr~nutation  of a code. We ex-

aIniJ]c  the b~Ji]ding blocks of such trc]lises,  and identify several ditlcrcnt  IIlcasures of trellis size or

coJnplcxity.

III Section 3 we illustrate the connection between the nlinimal  trellis of a code and that of the

d~Jal code which provides t,hc foundation for duality relationships that appear throughout this paper.

‘1’hc  section iJlcludes results that describe the structure and complexity of trellises for self-dual and

otlJcr sl)ccial codes.

in Section 4 wc discuss dil~lc~~sioI1/]cllgt]~ profiles of a code [14, 10, 30], which are cquiva]ent

to Wei’s gcncralizcd  hamming weights [32]. The dinlcnsion/length profiles are used to derive some

straightforward coInp]exity  bounds, We sumJnarize  some properties of these ~Jrofi]cs including duality

rclatioJ]shilm.

Wc dcfiJlc  a partial orderilJg on Ininima] trc]liscs  in Section 5. If tllc lniJliJnal trellises for two

codes arc co~nparab]c  in terms of this  partial ordering, then each of the comp]cxity  measures for

oI~c trellis is bounded by the same measure evaluated for the other  trellis. ‘1’his partial ordering

can solnctimcs  bc used to identify the permutation of a code with tlie least (or most) comp]cx

minimal trellis, or the code with the lowest (or ]lighcst)  complexity trellis

s a m e  para]nctcrs.  ‘J’]Ic  cxtrcmal  codes dctcrJniJlcd by this partial ordcriJlg

comp]cxity  bou~Jds  described in Section 4, We illustrate certain properties

such perIJmtations  and codes.

of all codes with the

turn out to Incct the

and give examples of
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l’illally, wc give some collc.luding  remarks in Section 6.

2 Minimal Trellis Representation of a Code

2.1 TIIe Minimal Span Generator Matrix

l’or aIIy lillcar  (n, k) block code C over G}’(q) there exists a l],inima] span generator Inatrix  (MSGh4)

rcl)rcsc~ltillg  C. A minima] trellis 7 for the code can bc constructed fronl LIIC MSGM. ‘1’bc trellis

has n + 1 lCVCIS of vcrtic.cs and n lCVCIS  of edges. ‘1’hc vertex levels, called drpihs, arc nunlbcred  from

(1 to n; ihc edge lcwcls, c.allcd siagcs, are numbered fro]n 1 to n, II;ac.11  stage of edges corresponds

LO onc stage of cncodi]lg or decoding using tbc trellis. l;acll vertex at depth i rcprcscnis  a possible

c)]codcr si, atc after  t,l Ic iii’ stage of cncodiug.  ‘1’lIc ith stagt correslJonds tcI t]IC ~th CO] UIIIU of t]IC

.th de,)t]l  corrcs~)OIl(ls to trllegcllcrator  matrix, wllcrcas  the I “space bctwccII”  columns i and i + 1.

‘1’lIc  edge-span of any row of tllc generator matrix is tile smallest set of consecutive integers

(sta,gcs)  containing  its nonzcro  positions. ‘1’lIc  vcrf[x-span of tbc ro~v  is tllc SC( of depths i such that

at least OIIC IIollzcro  symbol occurs before and after dcptb  i. Usiug the generator Inatrix  to encode

k illforlllation  symbols in r~ stages c,f encoding, the edge-span of the jL1’ row rcprcscnts  the int,crval

of sta.gcs duril)g which tbc jtt’ information symbol can affect tbc cncodcr  output. ‘1’lIc  vertex-span

.th illforlllatioll  sy]]ll)o]  earl afl’cct  tbc cncodcr  s t a t e .of tllc jt” row is tllc set, of dc~)ths at which tbc ~

For cxaln])]c,  tbc (6,3,3) sllortenccl IIalnming  code hm IIlinimal  sIJa~l gc]lcrator  matrix

[

1 1 1 0 0 0
G=

1

0 1 0 1 0 1 . (1)
001110

‘1’IIc edge spans arc {1,2,3}, {2,3,4,5,6}, and {3,4,5}. ‘1’hc vertex s])alls arc {1,2}, {2,3,4,5},

and {3,4}. Wc usc tl)c term span lcugth  to refer to tbc cardinality  of a spali,

A remarkable result is that the MSGM sinmltancous]y  makes all of the sl,ans as short as possible:

tllc edge-sl)ans (vertex-spans) for any other generator matrix rcpreselltil]g  C always contain t,hc

c.orrcs])ondi]lg  spans of so]nc row-~ )crmutcd  h4SGM  [27]. Any gcrlcrator  lnat, rix can be put into

IIlilli]nal s~)an for]]]  using the following greedy algorithm: at each stel~, l)crforln any row operation

tl]at rcduccs  tljc edge-span of any row of the matrix. ‘llc rows of tlic MS(;NI arc tbcn  “atomic

codeword s,” according to the terminology of Kscbischang  and Sorokiuc [21].

l’;acfl  vertex or state at a given depth can bc uuiqucly  Iabclcd using k or fewer symbols from

G1’(g). IIut any given state-label symbol can be reused to represent several information syInbols,

as loIIg as the vcrt,cx-s])ans  of tbc corresponding rows of the generator nlatrix  do not, ovcr]ap. ‘1’]]is

rcassig]llncnt, of state-label symbols to multip]c  rows of the generator lnatrix is the key to c~lcicnt

trellis rc])rcscntations  of tllc code.

ExaIII]dc 1 ‘1’hc minimal trellis T produced for the (6.3,3) shortcllcd  llam~ning  with MSGM
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given in equation (1) is shown in Figure 1. For this trellis wc can dcfi~lc tbc binary state label to bc

SZSI , where sz = 1 at depth i if the second infornlation  bit is I and r’ is ~vitbin tbc vertex-sl)an of

ttIc second row; and s] = 1 if citbcr  (a) tbc first infor)natiol)  bit  is 1 and z’ is within tbc vertex-span

of t,lic first row, or (b) tbc third information bit is 1 and i is within the vertex-sJJan of the third row.

‘1’bis t,ilnc-sllaring  arrangement for state bit s] is possib]c bccausc  the vertex sl)alls of the first and

ttlird  rows do not  overlap. ❑

0 1 2 3 4 5 6 depth

state 1 2 3 4 5 6 stafie

l’igurc  1: A minimal trellis for the (6,3,3) sllortcncd  llainming code.

III tbc scquc]  wc will bc primarily interested ill nondegf  nerafc codes, wllicll  wc define as codes

WIIOSC lnini~num  distance d and dual code minimum distallcc  dL arc bet]) at least 2. ])cgcncratc

codes have a simple intfcrprctation: If d <2, the vertex-sl)an of so]nc row of the generator matrix

1 < 2  sol,lc ~olullll)  of t he  gcl)crator  ]natrix Inust I)c iclcnticdy Zero. 11’or  al]mst bc clnl)ty;  if d ,

ctcgcllcratc  code, wc can si]np]y  ignore the cxtrallcous  symbol positions (if # < 2) and/or separately

dcc.oclc tlIc unl)rotcc.tcd infor~nation symbols (if d < 2). ‘JIIIC  code consisting of the relllaining  code

syInl)ols  is then nondcgcncratc.

2.2 Past and Future Subcodes

]’ollowing Forncy [8], let us define the itt’ past, and future subcodcs,  dcnoicd  F’i and ~i, to bc tbc

sets of a]] codewords WIIOSC vertex-spans arc contained in [O, i — I] and [i -I 1, ?Il rcspcc~ivc]y.  ‘J’hcse

sul)codm  arc nested in the following manner:

c==3-12F2~..2Fn:  {on).

lIkiclI of tbcsc  subcodcs  is linear: Pi is generated by the rows of tllc MSGM W11OSC  vertex-spans

arc collt,aillcd in [0, i — 1], and Fi is generated by the rows of tbc h4SGNl WIIOSC vertex-spans arc

contained in [i + 1, n]. Conscqucnt]y,  the dimensions of tllt:sc codes can bc easily dctcrmincd  from

the MSGM: fi ~ diln(~i) is the number of rows for which t IIC leftmosl  llo~lzero  entry lies in column

i + I or later, and Pi ~ diln(~i) is the nunlbcr  of rows for ~~hich the rightlllos(  nonzcro  entry lies in
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colu ImI r’ or earlier [27]. ‘1’his implies that pi and ~j arc mo~lotonic,

O=po<pl~. ..~p,l k-k (2)

Ic=f’o>.f  lz. .. f,,”o”o (3)

aucl never change by more than 1 from onc iudcx to the next,

p~<p~_,+l, i=l, . . ..n (4)

fi-l<”fi+l,  i=l,..., n. (5)

l~or each 1 ~ i ~ n, wc define the lc$l- and righf-basis zndicafors, li, r~ E {O, 1}, to icleutify the

IJositiolls  wl]crc  the future and ~)ast, dimensions clIaIIgc:

l’or ally i, Ii = 1 if aud only if the edge-span of soInc row of the MSGM G begins  in column i, or

cquivalcllt]y,  the it]’ c.olumII  of G is linearly indcl~clldeut of the i – 1 COIUIIIUS  to the lcfl. Similarly

ri = 1 if ancl only if the edge-spau of SOIIM  row of G ends ill columII i, i.e., the z“ti] column of G is

]iucarly iudcl)cndcnt, of the n – i columns to the righf.  ‘J’lIc  columIIs  WIICIX  li = 1 and tlIc columns

where ri = 1 each forln a basis for the column space of G, and these sets arc called the icft basis

and tllc righf Jasis, respectively. ‘1’hc positions of the left arid right  bmis  colu Inns can bc rc.gardccl

as information positions when the generator matrix is used to encode the illforlnatio~l  left-t~right

or right-to-]cft,  rcspcctivcly.

2.3 Primitive Structures of a Minimal Trellis

‘1’licrc are four basic building blocks that can bc used to constl  uct tllc lninimal  trellis for any

IIolldcgcllcratc  code. At any given stage i, all pri~nitive structures arc of the same tylw,  which is

dct,crmiucd by the values of 1~ and r~. ‘1’hc  primitive structures are:

1. Siml)lc  extension (–): ‘1’llis  primitive structure appears at stage i WIICII Ii = O, r~ = O, e.g.,

stage 4 iu Figure 1. Simple extensions at stage i il]lply a single ecl.gc out of each vertex at

dcl)th r’ — 1 aud a siuglc edge into each vertex at dcptll  i, II CIICC tllc numhcr  of vcrticcs  remains

collstaut.

2. Silnplc  expaJwion  (<): corresponds to Ii = 1, ri == O, c.g,, stages 1 and 2 in ]“igurc 1. ‘1’here

arc q edges out of each out of each vertex at depth i - 1, and a siuglc edge into each vcrlcx  at

depth i, hcmc.c lnultiplying  by q the IIulnbcr of states from OIIC  vertex depth to tllc next.



3.

4.

Si])ll>lc Iucr,ger  (>): corresponds to 1~ = 0, Ti = 1, e.g., stages 5 aIIcl 6 iu l’igurc 1. A simple

merger is a time-reversed siull)le expausiou, reduciug  the number  of s(ates  by a factor of g.

]Iutterfly  (x ): corresponds to 1~ = 1, ri = 1, e.g., stage  3 iu IJigure  1. ‘1’here arc g edges out, of

each vertex at depth i — 1 aud q edges iuto each vertex at dcptll  i, II(VICC  tlIc number of states

is constaut.

‘1’lIc total nulubcrs  of SUCII  })rimitivc  structures iu the trellis are dcllotcd  by N. , N<, N>, aud Nx ,

res})cctivcly.  For example, the trellis iu ligurc 1 has N< = :{ = N>, A’x = 2, AI’– = 4. l~ecallsc  tllc

gra~)h has cxac.tly  onc initial node al]d one terlni~ial node, the total IIumher of siInplc Cxl)ausions

lnust$ equal tlhc iota]  number  of simp]c mergers:

Nc = N>.

‘Ilje total numl)cr of edges iu the trellis, 11, cau be found by c.ouuti]lg tllc nulllber  of edges

associated with each primiiivc  trellis structure:

II: = N -  -I qN<  + qA1> + q2Nx .

Siluilarly,  the total numlmr of mergers M is tllc suI~l of ~1~~ I~ullll)cr

lucrgcrs  iucludcd  in buttcrflim

i14 = N >  + qNx

If we c.ouut  tlhc total number of vertices associated with each primitive.

(6)

of silrll)lc mergers aud the

(7)

si ructure,  thcu  eac.11  vertex

i]] the trellis (cxcludil)g  iuitial  allcl termiual  nodes) will bc coul]tcd t,wic(!,  so the total uuml)cr of

vmtic. cs V satisfies

2V–2=2N_+(q+l)A’<+  (q-I I)N>-I  2qA’x

wllic.11  gives

V=l+N_+- (g+l)N<-!qNx.

Colnl)iuillg (6), (7), and (8) we find
~=l!ww

q–] “
‘J’llis  is the gcucralization  of the biuary  vcrsiou of this result fouud iu [27].

2.4 Measures of Trellis Complexity for Viterbi I)ecod

‘1’lIc vertex sl)ace dimcllsio~l at depth i is

Vi=k —fi–?)i, i=:(l ,.. .,n

aud tlIc edge spat.c dimension at stage i is

c~ = k– ji ‘-~~i–]j i=j ,. ..,11.

6
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‘1’IIc total IIulnbcr of vcrticcs  at dclJth i is gU~ and the total nu~nber of edges at stage r’ is qeI. Of

course vi z O for all i since al lcasi  cmc vcrt,cx must exist at each dcptlI.  Also, for nondcgcncrate

codes, r-i z 1 for all i, i.e., no stage consists of a sillglc edge.

‘1’lIc most coIIImonly  used measure of Vitcrbi  dccodiug  complexity for a IIlillimal trellis is the

lnaxirIlunl dimcnsio~l of its state space,

A
SI,, ~X = max vi. (11)

i

‘J’llis  com}~]cxity  metric has been cited as one of the essential characteristics of any code [28]. SiIni-

]ar]Y, t,]Ic  lnaxilnunl dimension of tJIe edge s~)acc is

A
e,,, ax == Illax c~. (12)

i

]’orncy argues that this is a rnorc relevant complexity rncasurc  bccausc,  ulllikc S,,,ax, this quantity

callllot  bc rcduccd  by combining adjacent sta.gcs of a trellis [1 O].

A diffcrcllt lnctric,  usccl in the derivation of the MSGM [27], is t,hc total Icngth of all the edgc-

sljalls of the rows of tllc MSGM:

j, 1

wllcrc &j dc]lotcs  the ]cngl,h of the edge-span of tlIc ~Lt’

lnctric  is tile total lengt]l of all the vertex-spans:

k

(13)

row of the MSGM. A silllilar  sl)an length

j:. ]

wlicrc Vj = &j – 1 is thC length Of tllc vcrt,cx-sl>an  of tllC ~’}’ row of the h! SGh!. ‘1’hcsc two metrics

arc cquivalcmt  to tllc suIns of all the edge dimcnsimls  or VCI  tex dinlcnsions  (sulnlncd  over stages or

dcpt]ls,  rcspcctivc]y):
n ?1

It is argued in [26, 27] that more meaningful lncasures  of \~itcrbi  dccodi)lg coln~]]cxity arc the total

nurl}bcr of edges L’, vcrticcs  V, and mergers 14, rather than simply tllc vertex  or edge di~ncnsiona]ity:

i:-c

(14)

(15)

(16)

E is equal to tllc nu~nl)cr  of binary additions required ((, compute ~)atll nlctrics,  and Af is the

nulnbcr of q-ary co]uparisons  required to merge trellis paths. ‘1’hc col(ll)utatiollal  colnp]cxity  o f

Vit,crbi clccoding  is prol}ortiona]  to E [27].
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3 Minimal Trellis Representation of the Dual Code

III this section wc explore the relationship betweml the minimal trellises for a code C and its dual

C1 .

3.1 Past and l?uture Subcode Relationships

As discussed ill %ction  2.2, li = O if and only if the iLk’ coluIIIn  of i,llc MSGNI can be written as solne

lillcar  coInl~ination  of the i – 1 columns to its left. III other words, tllcrc  exists a dual codcworcl y of

the forln

y=/LYxv.  ..x,lm&”(J

i - 1 n-l

Where XXX . . . X denotes son-Ic  sequence of symbols from GF(q). I)cfining  YI, YZ, ..., Y,, -k in Lllis

~Ilanncr for cac.h of the left-dcpcndcnt columns in the MSGM produces 71-- k dual codewords of the

forln

y] = Xxx...  xlooo.. o

Y2 = xxx.. Xlooo.  o

YIL – k = xxx . . . xl

‘1’hcsc  dual codewords arc clearly linearly indcpclldcnt  al)d t,hus call he uscxl as the rows of the

L = 1 are prcciscly Lhc positions wheregenerator lnat,rix for C 1. Wc scc that the positions where Vi

ii = O; tlIc same argulncnt  app]icd to the right-dependent columns shows that, the positioIls  where

1: = 1 arc })rcciscly  t,hc positions where r~ .= O. ]lere  1: and I’;- arc the left- and right-basis

il)dicators  for CJ ‘J’hcsc observations lead to the following thcoren].

!I’Imcmcnn  1 l’or each O < i < n, the Iejl- and right-basis indicaiorb for a code aIl d its dual arc

rclaicd by

l~+~~==l~+ri=~

and IhC dimensions ))ij ./’i, of t h e  past and  fulurc subcodcs of a code arc given  in icrms  of ihosc of

ihc dual code  p;, fi~ as fo!ioros:

j)i==k–ll+i+f~

J-i=: k.-i+p:.

Wc bclicvc that, this result, which relates minimal trellises of a code and dual for any jzcd

ljcrlnutation, is more fundamental than similar dual relationships for IJcr]nutations  of codes. ‘1’his

result is also contained in [1 O], but  derived by first considering perInutatiolls  of coclcs.



3.2 Primitive Trellis Structures for the Dual Cocle

Much information about tl]c trellis for the dual code caIl be iufcrred frolll tllc trellis structure of the

code. For exalnl)lc,  if tllc code has a simple cxl)aIlsion  at t IIC itl’ stage, tll~ll li = 1, l’~ = O, which

implies, usi~lg ‘J’llcorcm  1, that tllc dual code has it: = 1, rj = O, hcIIcc tlic trellis of the dual  code

also lIas a si]nple expansion structure at this stage.  Rel)catilIg  this l)roccdurc  wc find the “dual” of

cacll I)rilnitivc structure, showJI  in ‘l’able 1.

~odc Structure

il~)plc l’;xtcnsion (–)

l~=o,r’i=()

imp]c l’lxpaIlsion (<)

li=l, ri=o

Simple Merger (>)

l~=o,ri=]

IIuttcrfly  (x )

l~=l,ri=l

l)ual  Structure
.—— —— —

liutterfly (x )

1:-= l,r’}=1
—

Siml)lc l;xpansiol]  (<)

/;-= l,r’:=o —
Simple Merger (>)

1:-= O,r’:=1

Simple lxtxmsioll  (–)

1:-=  0,?’:=0
—.

‘J’able 1: l)ual  prirllitive  strilc,turcs.

Givc]l all unlabeled trellis, ‘l’able 1 can be used to dctcrlnine  the nulnlwr  and type of primitive

structures l)rcscnt  at, every dcl)th of the trellis for tl)c dual code. llowcvcr,  as tllc following exa~nl)lc

illustrates, wc cannot  in general determine i,hc iIltercoll~lcctio)ls  without adclit,ional information about

t!llc C.odc.

ExalllI)lC 2 l,ct Cl and Cz be ihc codes wii,ll gcmcrat or matrices G ] = [ 1
0110
1111

and G 2 =

[ 1
0110
1101 rcsl)cc.t,ivcly.  l’ro]n l“igurc  2, which shows the minima] trellises for these codes and their

duals,  wc can scc L]lat ‘7(CI  ) and T(~z) have the sa~lle structure (oIIly  ilIc edge ]abc]s  are difrcrcIIL),

but  7((?~) and T(C~) do not. u

l’igurc 2: Minilna] trellises (a) 7(CI)  and 7(Cf) (Cl is self-dual), (b) T(C2),  (c) 7 (C;).

‘1’hc dual rclatiolwllil)  for primitive structures shown in ‘1’able 1 ilnl,lics that,

N: = N< =, N> =- N;
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and

N _  == qN~.

3.3 Dual Code Complexity Measures

‘1’l)c  followiug well-kuow]l result, first noted by Forncy [8], is a conscqucuce  of (9) aud ‘J’hcorcm  1.

LCImIIa 1 A code and its dual code have equivalent ver!ez spaces, nanlclrj  jor each i,

~onscqucnt]y,  lnal)y of the trellis complexity measures for a code cau Iw dctcrmiucd  by cvaluatiug

tlIc salnc IIlcasurc ON t,lIc dual code:

V=V1
1

Smax ‘= snlax

&_k=v=2/~,:  &l --(?/– k).

Nok t,llat, this implies c = e L for auy rate ~~ code.

‘1’lIc nulnbcr  of edges iu the miuimal  trellis of a code aud its dual arc not as conveniently related.

l“roln (1 O) aud ‘J’llcorclu  1,

Ci=c:+(]-.  r: —/;’)

for cacll 1 ~ i ~ n. Clonscqucntly, siIlcc I 1-- r) – 1~ I < 1, and frolll the dcfiuition  of 1;,

L < h’1 < q);.
q

l;qualit,y  is l)ossiblc oIIly for the dcgcneratc  (n, n, 1 ) code C) I its dual

3.4 Minimal Trellises for Self-Ilual  and Other Special Codes

For self-dual codes, the theory  of tlIc previous two sections collapses neatly  to yield stroI}gcr  results

bccausc  for any such code ii = 1: aud ri = r~ for all i. ~ollscqueut]y  fronl ‘J’llcorem  1:

Tlmcmcnn  2 For any selJ-dual code C, for each i =: 1,2, . . . n, ciihcr:

1. li = 1 and Vi = O, or

2. /i=Oaltd~izl,

i. c., every stage corresponds  to an i?lformation symbol II}LCII  encoding  jronl one direct ion and a

pariiy symbo~  u1he7~  encoding jrom lhe othc;r  direclion. Irhc only  prilniiive Ircllis sirwciurcs ill ‘T(C)

arc simp!c expansions and simple mergers.

10



Wc say that two trellises TI, TZ have equivalent structures, denoted TI w 72 if T] can be made

identical to 72 by an appropriate relabeling. E.g., for the codes of exalnplc  2, ‘T(CI ) w ‘7 (Ca) but

7(C~) # T(C; ).

‘J’IIc converse of ‘J’hcorem 2 does not  hold: a code whose lninilna]  trellis c.olltains  only simple

exl)ausiol)s aucl mergers need not be self-dual. In fact, C IIkay not be self-dual even when 7(C) *

7(C1),  e.g., the code whose MSGM is G= [ 1
1010
0111 “

IIoucver,  arclahelcd trellis for this code is

self-dual.

I, CIIIIIMI 2 Given any  binary codc  C such ihat’T (C) eoniains only  simple crpansions andsimplc

IncIgcTs,  them crisis ase~-dualcode Ct s u c h  ihai7(C)~7 (C’).

Proof: l,clGclcl)otca  l) MSGMforC,  For~nak x~~MSGM  CJ'for C'l)yscttii]g cacllclcI~leI~to fCJ'

to 1 if tlIc corrcs})onding clement in G bcgills or ends a span, or zero othcI wise. ‘J’hcn 7(C) ~ 7( C’)

and C’ is a self-dual code with n~illinm~n distallcc  two. ■

‘J’IIC  following theorem, which is a consequence of Theorem 2 a~ld equations (6), (7), and (8),

SIIOWS that for self-dual codes, the complexity measures l;, V, and M arc linearly related, and the

Inaxilllunl  edge and vertex  dimensions arc equal.

Theorem  3 For any sclj-dual code,

M  = ‘-l:
2q

“max  = ‘max .

‘J’l]crc is auothcr  case where wc can restrict the type of structures (hat can appear iu tllc trellis

for a code:

Tllcorcnn 4 lj C is such that all codeword weights arc divisible by SOIIIC integer m >2, then

1 .  77tcrc doc.s nol exist a  position i  s u c h  that la == r, = 1, i.e., 7 (C) c o n t a i n s  no buticrfly

structures.

2.  C cannot have  rule grcaicr than ~.

3. c m a x  =  Smax

( )
X/v> ~ E,]c1

11



Prcmfi If 1~ = r’~ = 1 i!hcn the P’ column begins and ends spans in t,lle NISGM.  ‘1’his implies the

cxistcncc  of coctcwords  of the form x = XXX . . . XIOn-i and y= Oi-](-l)XA”XX,  where ( – 1 )

ctcnotcs tllc adclitivc inverse of 1 in G’1’(q)  and XXX ~ . X denotes some string of symbols in GJ1(q).

‘J’l~cII x + y is a codeword of weight 1x1 + Iyl – 2 which can)]ot bc divisible I)y ~. ‘J’l~is proves 1. Vrom

1 wc have lj + r~ s 1 for all i, so 2k = ~~~=1 (h -t ~i) S Z~~I  1 = ?~, Wllicll Proves 2 ‘l’~~c fact  ‘]~at

7(C) CaII have no buttcrily structures proves 3. From (16), 2gA1 == ~~~= ~(1~ -i r~)q” < >~~=1 q“ = J;,

proving 5, and 4 follows clircctly. Since ii + ?’i ~ 1, ‘1’hcoI cm 1 ilnp]ics 1} -1 r~ ~ 1, which gives 6

and 7. 9

Codes for which all coclcword weights arc divisible l)y SOIIIC integer otllcr  than onc arc called

divisihlc  codes [31]. l;xamplcs  of divisible codes include tltc  (31,1 0,12) cyclic codes and doubly-even

self dual codes such as the cxtcndcd  Golay code.

‘J’IIc convcrsc of ‘J’hccrrcm  .4 does not hold- a code is not necessarily divisihlc  when ii -F r~ ~ ]

for all i, e.g., code Cl of l’kamplc  2. If a code and its dllitl satisfy ttIc conditions of ‘J’hcorcm  4 then

tlIc code strongly rcscmblcs  a self-dual code: the code must, have rate ~, ancl its trellis contains only

sillq)lc cxpa]~sioIIs  and simple mergers.

4 Trellis Complexity Bounds

Although tlic results of the previous sections assume a fixed coordinak ordering for the code, the

trellis sb-ucturc,  and hence trellis comp]cxity,  depends on the pcrrnu Lation of the code. Massey refers

to the procedure of rc-ordering  the code symbols to rcducc  the trellis com~)lcxity as “the art of trellis

decoding” [25, p. 9].

III this  section wc identify code paraInetcrs  that, affect the possildc  trellis complexity, dcscribc

ul)l)cr and lower bounds based on these paralnetcrs, and illustrate l)ropcrtics  of certain codes that

have low complexity trellises.

l’irsl,  soJnc notation. ],ct S,, denote  tllc set of all pcrlnutations of {1,2, . n}j a n d  f o r  a n y

r E S,,, let CT denote the code C with coordinates i-c ordered accordil~.g to m. llccausc  the code and

dual code ~~rovide symmetric. constraints 011 the code:’s minilnal  trellis, the complexity bounds arc

dcvclo~~cd  by considering the characteristics of both the code and its dual. WC refer to an (n, k, d)

code wit]]  dual distance d~ as an (n, k, cl, dl) code.



4.1 130unds Relating One Complexity Measure to Another

‘1’lIc  Iollowillg  lemma arises from the definition of Sr,,ax aud cl,,aX, and tllc fact that, tbc vertex  and

edge cli[ncusions  cllangc by 110 mom thau  one unit  from OIIC  iudcx to the IIcxi,.

Sumlniug  tbc iucqua]itics  iu ],cmma  3 leads to the following boandiup; relationships among the

complexity measures.

Tlmorcnn 5 Irhc  ioial complexi ty  measures  v, c, V, >; ore upper boun dcd in terms oj the nlari-

n1u1f2 coInplcrziy measures s,,, aX, c,l, aX by

V<s— (m a x  ~t  —  .Smax ) (17)

(c < C,,,ax n i 1 -- eu, a,, )

[
V <  n+ Q+-1–2$ 1

2
s,,,. . ._

— ~_l “lax 9 g - 1

[ 1
l!! < 11 + 19— – 2(.,.X q’”’”” – –~q -

g - 1 q – l

(18)

(19)

(20)

Sillcc tlIc average edge dimcusion  over all stages is c/?~ aud i,bc average vertex dimcusion  over

tlIc last ~1 dcpl,bs  is v/n, 100SC lower bouIIds on V aud 11 can bc o},taiucd from Jensen’s iucquality.

Tlmorcnn 6 7’hc iota! c o m p l e x i t y  m e a s u r e s  V, E arc lower bovndcd in icr~~ls of the total s~~an

lcnglh  complr.rity measures v, c by

v  >1-1 llq”~n

E ~ nqcl” .

‘1’here arc also tiglltcr  lower bounds on V and 1; iu tcrills  of v aud E.

TIIeorcmI  7 (liven a ioial span length v ore, let AE == E–C-(n-I  l--c-) and  Av = v–s - ( I I – S - ) ,

U}II c rc c – ~ (n + 1)/2 and S - < 11/2 are the largest intcgels such that AE ~ () and Av ~ O. l“hcn

[ 1
v~ !1+5-2s- q’- -  ;:l +-(q -  1),’-AV

[ 1
1<> n  + ;J_+ –  2e-” q ’ -  –  --~q_ ~ +(g– l)q’’AE.

13



‘1’llis thcorcrn  follows from t,hc observation that, for givcu v or c, a vertex or edge diincnsion

l)rofilc such m the onc in l’igurc 3 miuimizcs  V or 1~. Notice the si~Ililarily of these lower bounds in

terms of  s– a n d  c- “with i,hc corresponding upper  lmunds  (1 9), (20) In tcrriIs of Snlax  and c,,, aX.

l’igurc 3: AII cd,gc dimcllsiou  profile that ]nini]nims ~; subject to a constraint, on total edge span c.

4.2 Complexity Lower Bounds Based 011 MS(2M Span Lengh

l}vcry row of a generator matrix for an (n, k, d, dl- ) code IIIUSt IIavc edge-sl)an length Ci z d and

vertex-s])a]l Icngth vi z d – 1. Applying this simp]c bound to both the code and the dual cocle and

usi]lg the fact tlllat VL = v = & – k ]cads t,o t]le  fol]c)wing low{r  bounds 0]1 the sl)an lej]gtll complexity

l]lcasurcs  I/ and c.

TlmorcIn  8 Y’hc  ioial lcngihs v and E OJ Ihe vcrlcz-spans and edge-spans  for  any (n ,  k, d, d~)

c o d e  arc iowcr bounded by

v> max{k(d -- I)j(n --k)(d~  – 1)}

E z k+ max{k(d-  1), (7I – k)(ri~ – 1)} .

A])l~lyilIg the Siuglcton  bound to I,lIC incqua]itics  in this thcorcIll  gives I,hc weaker  bouIIds  v ~

(d-- l)(dl -l)andc ~k+(d-l)(d’-- ]).

W C say that a code mcctiug  tk bounds in Thcorcln  8 with cqua]ity  is a ~t~inimal span  code. A n

cxalnl)]c is the (n, 1, n, 2) rcpctiticn)  code. ’110 construct a llondcgc]lerat,c (?), k, d, 2) biuary  minimal

sl~au code for any d >2 and n ~ d + (k – 1) (j], let the first row of the MSGM bc

_~1000..0
d n--d

and forlll cac.1]  successive row by cyclically shiftirlg the previous row at ]cast ~~1 posiiiol)s  bu~ noi,

luorc thau d I)ositions to the right, SUC}I  that the total of all ihc shifts  is n –- d.

‘J’ltc dual of a lninima]  span code is also a mil,ima]  s~~a]l code. ‘1’lICSC  codes arc not usually good

in terms of distauce,  though they have very low complexity trellises.

14



‘1’hc SlJaII lcIIgth bounds in ‘J%cormll  8, combined with the bou IIds (1 ~) and (18) lead to lower

bounds  on tlIc colllr)lcxity Incasurcs  S,,,ax, C,,,ax for auy (n, A, d, dL ) code:

S,,,ax(n - S,,,ax) ~ max {k(d - 1), (T, - k)(d’ --1 ))

C,,,ax(n  + 1- C,,,ax)  ~ k + max {k(d -- 1), (n - k)(dl  - 1)} .

A slightly weaker version of this bound on s,,,aX has been prcwcd  for botl) lil]car and nonlinear codes

[22]. ‘1’his bound im])lics,  for instance, that, tlIc average edge dimension cr,,,X can IIcvcr  bc lower

tllau  tbc asylnptot,ic  coding gaiu led/n. We cau also obtain  lJOUUCIS  on V a~ld 1; for any (72, k, d, d~ )

code by substituting, the right hand sides of tbc bouuds  in ‘1’l~coreIn  8 for v aud c in ‘1’bcorcms  6

and 7.

4.3 Dilllellsioll/1.ellgtll  Profiles

Wc call scc from tlIc complexity measures (11) - (16) that a pcrlnutatioll of C Ihat makes .f~ and ~}i

large (s~na]l)  wbcrcvcr  possible will produce a low (Iligb)  c{nnplexity trellis.  It is useful, tbercforc,

to fiIId bouIlds ON tbcsc  quantities.

‘J’IIc suppori  of a vector  x is t,lIc set of nonzero  positions in z. ‘1’IIc sul)l}ort of a set of vectors is

tbc ullio]]  of the individual supports.

Dcfiniticm 1 For  a given code C and any O < i < n, Jet K~(C) I!I[ III( 7//axi7nun1 d i m e n s i o n  of a

hncar svkode of C having support whose size is no grcaiel than  i. Y’lc s(I {l<z(C), i = O, . . . . n} is

called the cliIl~cllsio~I/lc~~gtlI prof i le  (1)1,1)) [9, 10, 14, 30j.

‘J’lIc  1)1,1’  contains  tbc same information about, a code as the mini~lml]l supporl weights [11,

17, 18], wllicll have more recently becm called tbc .gencralizcd  llamrnillg  weights (GIIW)  or wcigbt

hierarchy [32]. ‘1’IIc ~t]’ lnillilmlm  support weight or Gll W’ is the slnallcst, supl)ort  size of ally ~-

dilncnsiona]  linear subcodc  of C.

Since tbc past and future subcodcs  ‘Pi aud Fi arc subcodcs  of C with sul)})ort size no larger than

i and n — i, rcsl)cctivcly,  LIIC past aud future subcode  dimelisions  arc t)oulldcd by the 1)1,1):

(21)

j-, < K,,-i(c). (22)

‘J’lICSC  bouIlds,  which also a~)pcared  in [14, cq. (1 .4)], are tight in the following sense: for any i,

t,llcrc exists a l)crmutcd  version of C that meets tbc bouud  (21), aud OIIC tlIat  ~ncets (22), tbougb  it

lnay not bc possible to meet botb  simultaneously. ‘J’lIc  1)1,1)  of a code call bc used to lower bouncl

tllc trellis colnplcxity  for any pcrmutaiion of that, code, as wc shall sec ill Section 4.5.

Sillcc caclI Ii’i(C) is awoc.iatcd with a linear subcodc  of Cl we cau usc bounds oa tbc l)CSL  possible

linear codes (i.e., codes with the largest possible minimum distance) to upl)cr bound tbc 1)1,1’:
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‘J’lmorwm 9 l“or  an (71, k, d, dl) code C and any O ~ i ~ n,

Uhf e I’c

Ki(n, k,d)dl) S min[k”,~x(i,  d), k -- n + i + k~,~~(n  -- i, dl)]

and k,,,ax(nl, d) is the largest possibie d imension for  any q-ary linear block code of lcngih  m au d

minimu~n  distance  d .  I’//e  set {~i(n, k,d, dL), i =  O, . ,  n } is called the u]J1]cr dill~cl)sio~~/lcl~gtl~

I)rofilc  (lJI)l,P) for iltc code parameters (n, k, d, rl~ ).

Proofi Since lfi(C) is the dimension of a code wit]]  distance d and support size not cxcccding  i, wc

IIavc A’i(C) < k,,,~~(i,  d). lJsing ‘Jlcormn  1,

K~(C)  = :n~;  p~(C7r) := k - n + i -1 y m : j ~ ( C 1 7 r )

a~ld ji(C1 n) is the climcnsiou  of a subcodc  of distance  d~ and supl)orl  size not, cxcecdiug  n — i, so

Ki(C) < k – n + i + k,,,a. (n – i, d*). ‘1’hc theorem is a coml)inatiol) of tl)csc two inequalities. ■

‘1’lIc  usc of parameters for tl]e Lest linear codes (or boul](ls  on such COCICS) to bound 1)1,1’, GIIW,

or other qualltitlics  related to trellis colnplcxity  also appears in [7, 10, 12, 14, 19, 20, 28, 30].

])ounds  based on the U])],]’ may be 100 SC, as it may not I.)e  possible for a siliglc (n, k, d, dL ) code

and its dual to both have a series of subcodes,  all with the maxinmm  ccdc dimensions. ]iowever,

these bounds arc important practically, bccausc  much data about tllc best l)ossible codes has been

tabulated [4], and in many cases, the lJI)l,l’ bounds can be achieved wit}] equality.

Si)lc.c for any (n, k) code C, pi and $i botb  reach maxilnum  vrtlucs of k (j. = k and p,, = k)

and can fall fro~n these values at a ~naxi~nurn rate of one u nit, pcr trellis siagc,  pi and ji arc lower

bounded as follows:

Jfi(C)  > Pi 2 lf.i(~~,  ~) A max(O,  k – ?1 + i ) (23)

Jfn-i(C)  2 .fi 2 K.,, _i(n, k) = Illax(O,k -- i). (24)

‘1’lIc set {~i(C), i = O, 1, . . . n} is called the lower di7]/c7/siott/le71gt/t  profile (IJJ)J.J’) for tllc CO~C

~)aralnctcrs  (n, k). ‘J’hc 1,1)1,1’ stays at, O until the last possible de~)th I)cforc it call rise linearly at

the rate of onc dilncnsioll  l)cr depth to reach its final value of k at dcpt]l IL. ‘1’IIc 1.1)1,1’ can be used

to up])cr bound the coml)lcxity  of a minimal trellis for an arbitrary (n, k) code.

4.4 Properties of Dilllellsioll/I,e~lgtl~  Profiles

‘1’lIc 1)1,1’s  possess ~nany of the same properties as the past a~ld future  sul)codc dimensions which they

bound,  For cxalnplc,  t}lc nlonotonicity  and unit incrc]ncni,  properties (2) and (4) of {pi} also hold



for K~(C), F~(C),  and ~j(C): ihC iucremcnts  Fj+l (?1, L!, d, dl) – ll~(?l,  k, d, dl ), K~+~(C)  – lf~(C),

and l!li+l(n, k) – lL’i(71,  k) must equal O or 1 for all i. Siiililarly, duality I)rolmrtics c.au bc easily

cxtc]]dcd.

“J’llcrc is a convcllicnt, rclatio]lshil)  bctwccn the I)I,P  of a C.(,dc and that of its dual, stated ill [14, cq.

(1 .12)] and [10, ‘J’llcorcln  3], which is equivalent LO tllc duality rclatiouship  for gcncra]izcd ]Iamlniug

wcigllts [32, ‘1’llcorcm 3]. Similar rclationshi])s  hold for the upper and lower diIllc]~sio]]/lc]~gtll

IJrofilcs.  ‘1’IIc following lcmmagivcs Lhcsc relations l]ips alon!, wit]]  a proof of i,he 1)1,1’  result, tl]at is

sonlcwllat, siinlJlcr than those that, have appeared iu the literature.

Immma  4 lIbral10 ~ is n, ihc 111,1’, UDI,I’  and Ll)ll’saiisfy ihr fo l lowing dual i ty  relalion-

Sllips:

Ki(c~) = r’ – k + Kn-i(c)

I&(n,n  – k) == i-- k+ JA’,,. i(n, k)

l’roof:

h’i(c’  ) = yllaj)i(hr) = y: (i – k + f-i(c7r)) = i – /(’+ :::: j-i(c7r)  = r’ – k!+ K,,-i(c)

wl)crc  L1)C sccoud equality follows from ‘J’heorcm  1. ‘J’hc other equations follow directly from the

lJI)I,I’  and 1,1)1,1’ dcfinit,ions. ■

‘J’lic 1)1,1’  of an (71, k, d, d~) code C is related to the 1,1)1,1’ and lJ1}l,I’ as follows:

~“~(n, k,d, d*) = K~(C)  =A’i(n, k) if O s is d- 1 or n-- dL -I 1 < i< n (26)

~i(n, k,d, dl) = Ki(C) =: &(n,k)  + 1 if d s i < min
{ 7’-k)”+ 1:1 -]} (27)

{
o r  m a x  71—  li)71 – dL -

[$1+”’} <’<’’-”1

‘lIIc 1)1,1’  al)d lJ1)I,I’  arc lower bouudcd  cvcrywllcrc  by the 1,1)1,1’ a]]d equal tlIc 1.1)1,1’ at both ends

of the iutcrva]  [0, ?~]. ‘J’llcir range of dcj)arturc  frcnn the 1,1)1,1’ is [d, n - # ]. ]nsidc this range LIIC

1)1,1’  and lJI)I,I’  stay  cqua] to cac.11  other for an additional [d/q] depths from the left and [dL /ql

dcl)tll)s froln tllc right,.

‘I’l Ic above ])ro])crtics follow from the definitions of the p) ofilcs, tllc ~)ropmtics  of pi stated iu Sec-

tion 2.2, the duality relationships in l.clnma  4, ancl the fact t hat k ~,aT(71,  d) equals the corrcspouding

Gricsnlcr  bou]ld wl]cn  k~,ax(n, d) = 2. A more thorough discussion of tl]c 1)1,1)  is contained in [10].

Example 3 Supl)osc C is I,lIC (6,3,3)3) shortened Hamruillg  c.odc whose generator matrix is givcu

ill (l). ‘J’l]c  1,1 JI,l) for this code is {0,0,0,0, 1,2,3}. Siuc.c c1 = 71 — d’- = 3, the 1)1,1’  and the lJI)I,  I’

equal tlllc l,l)lJ1’ cxccpt  at i = 3. ‘J’hus the 1)1,1’  and U])],]’ arc both {O, 0,0, 1, 1,2, 3}. n
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ExamIdc  4 ‘]’hc  1,1)1,1’ of the (15,5,7,4) IICII  code is {0,0,0,0,0,0,0,0,0,0,0, 1,2,3,4,5}. AI)-

~,lying (26) wc find that, the 1)1,1’ and UI)I.I’ equal {0,0,0,0,0,0,0, - ,--, –, -,- ,2,3,4,5}, and (27)

fills ill the five missing values: the 1)1,1’ and U1)I,l’ equal {0,0,0,0,0,0,0,1,1,1, 1,2,2,3,4,5}. ❑

II) the two prcccding  exalnples,  the 1)1,1’  is completely dct,erlnilicrl  by tl)c cocle para~neters  n,

d, and d~. la fact  the 1)1,1)  is co]nplctcly  spccifirl by  (26) a n d  ( 2 7 )  whrwcwcr  n - k < d + [$1

a n d  k < ri~ +- [$1.  Computat ion of  the I)IJ’ for largf  codes is usually lImch lnore difhcult

than tllesc  examples might  suggest. For many codes the complete 1)1,1’  is unknown, and ~nuch

research l]as hccn devoted to dcixmnining  partial 1)1,1)  (or equivalently, GII  W) infor]nation  for

codes [5, 7, 12, 18, 29, 33].

Extin~ldc 5 Suppose C is a (48, 24, 12, 12) self- dual cod[: (e.g., the c]uadratic  residue code with

tl)csc ~)aranmtcrs).  Applying (25)- (27) l)roduccs  t]]c 1)1,1’  I)ounds  for C SI1OWJ1  in Pigurc  4. ❑

24

20

16

12

8

4

0

——-

+. . . . . . . . . . . . . . . . 1 mvcr Bound

~ (11117

4
0 @

Depth i

Ngurc 4: I)I,P bounds for a (48,24,12) self-dual code

4.5 Complexity Bounds from Dimension/1 ,engtll Profiles

‘1’he 1)1,1’ bounds (21) and (22) and complexity definitions (11) - (16) lead to silnl)lc bounds o]) trellis

colnl)lcxity  that arc useful when the 1)1,1’ of a given code is

slightly  by using the additional fact that the vertex  and

cvcrywllcrc.  (III fact, if a trellis  col]vcrges  to a singtc vertm

n, t,llcn C is a direct sum code, see Appc]ldix  A.)
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edge dimc]lsiolls must bc nonnegative

at depth i, i.e., vi = O for solnc r’ # O or



ThccrITm  10 Y’llc complczity  measures  for ihe minimal

mutaiio?l  r of a given (n, k) code C arc lower bounded by:

S1,,ax(~7T) ~ ,&n:,xl  (k - ~<,(C) -

C,,,aX(~T) ~ ,ml (k - ~i’,-I(C)

c(CX)  z ~ nlax{O, k - If’i(C)  -
i=o

trellis 7“ (Cm) corw.spending to any pcr-

Kn-i(q) (28)

lf,~-i(C)) (29)

1{,~-i(C)} (30)

n

V(c?’r) > ~qmax{O,  k-K,(C)- Kn_,  (C)] (31)
i=o

l/(c7r)  > ~ q max{O, A- K,-.l(C)-  Kn-t(~)} (32)
i=]

A4(C7r) >: ~[K@) – Ki_l(C)]qmax{(’)k-K’-’(  cK”K”  - ‘(c)}. (33)

‘J’hc 1)1,1’  bound (28) on state complexity has been derived in [1 O, 30, 23]. Some of the bounds in

‘Ilcorcm 10 call bc ilnprove.d slightly when C is nolldqymc]  ate bccausc  t}lis condition ilnp]ies that

Ci>l.

‘JIIc 111)1,1’  bound (rJ’hcorc~ll  9) leads to silnilar  lower bounds on trellis colllplexity  that apply to

all c.odes with givcw code parameters.

‘1’hccmcm  11 771c complcxiiy measures for the minimal Ircllis 7(C) re~)?cscniing  any (n, k, d, d~)

code C arc 10 U)CI’ bounded by:

E(C) > ~max {O, k –~7i. l(?~)k,  d,dL) --~,z-i(~~, k,d, dl )} (36)
i=l

v ( c )  >59max{0,k-17,  (t,,k,  d, fIL)-Xn-,  (rt,k,d,dL)} (37)
i=o
,,

h(c) > ~ g max{O,  k-R-,  -l(tl,  k,d, dL)- Zn-t(n,  k,d, dl )} (38)
i=]

Finally, the 1,1)1,1’ bounds (23) (24) lead imnlcdiatcly  to simple explicit upper hounds  on the

various complexity measures that apply to all codes with .givcn length  and dilncnsion.



Thcorcxn  12 7’Ac complexity measures for the minimal trellis 7 (C) corresponding to any (n, k)

c o d e  C crc uppcv  bounded by:

s,,,ar(C) ~ miu(k,  n - k) (40)

en,aT(C)  <rIlill(k,7/ -k-l 1 ) (41)

C(c) <k(n - k-t 1) (42)

[ 1 ’V(C)< fl+~~~–21ni11(k,tz–k)  yn’’ntk’n-kl– - - 2 - -
g- 1

[

2g
E((?)  < n + —- – 1

2q
21niu(k,7t  -  k + 1 )  qr’’i’’(”’”- ‘+ 1) - -  -–

g – l g - l

[ 1M(C) < -+i + max(O,  2k - n) q“’’’’k)’’’-k)  -- - ‘ .
q - l

(43)

(44)

(45)

‘1’lIc  iucqua]ity  (40) is t,l]e well-known Wolf bouncl [34]. Note that (17) (20) arc tigl]ter  tl)an

(42)- (44), except  when (40) and (41) are met with equality, in whicl] case tl,e l,ouuds  are. the same.

‘J’l)c  derivation of t,llc inequalities iu ‘1’heorcms  10, 11, al, d 12 is rather straigbtforwarcl,  with the

cxccption  of the bouuds  on J!4 (equations (33), (39), and (45)). ‘J’bcsc hounds  can bc derived usiug

tlte sa~ne arguments as used in the proof of !l’hcorcm 13 iu the next sectiol).

5 Best and Worst Trellises

5.1 Uniform Comparability

I II gcmcral,  to dct,erlninc which of t,wo miuimal  trellises is less co]np]cx,  wc lImst  first choose the

relevant complexity measure. however, iu some cases one trellis ~[nay be sinlpler  thau anotllcr  at

every stage  aud depth with respect to all of the colnplcxity  measures simu]taucously.

Dcfiniticm  2 ~’or fwo (71, k) codes Cl, C2 having minimal  irclliscs 7“(CI ) a~)d 7(C2), zuc say that

‘T(C1) < T(CZ)  if pi(C1)  > pi(Cz) a n d  fi(C1) > fi(C2) f o r  a l l  i. If cif//cr T(C1) ~ T(C2) o r

7(~z) < T(CI ), ihcn  tl~c iwo  Irc//iscs arc  uuiforluly  co~npal  able.

‘]’]tc binary re]ation  ~ defines a partial ordering OJ] ar,y set of codes wit]]  the same ]cngtb and

dilncllsion. ]f 7(CI  ) ~ ‘7 (C~) alld T(C2) < T(C,  ) theu tl,e two Ininilnal  trc]liscs  have equivalent

complcxit,  y, though tllcy may not have the same structure. 1 ‘or cxamp]c,  for tbc code C2 of example 2,

T(C2) < T(C~) and T(C~) < 7(G) but  Cz # C;.

Note that if T(C1 ) < T(C2) then  at every depth  and st age 7(C1 ) lIas no Inorc  vertices or edges

tllau  7“ (Ca),  but the converse is not, necessarily true. For example, the codes with ge]lcrat,or  ]nat,rices

[ :~:: 1 “)d [ :~~: 1 are ]Iot uuiformly  comparable, even t}lough t,llc first IIas a miuinlal  trellis

that is at lcasst as sirnp]c  al every stage than that, of tile s(cond.  We defiue comparability in ter]m

?0



of ~Jast and future climcnsions rather than edge a]ld vertex dimensions because this  gives a closer

connection to il)c diillcl~sioll/lcl~gt,lI profiles.

Tllcorcm  1 3  I f  7(C1  ) 5 7(CZ), then  ail oj ih.r jollowing trellis complcri!y nleastir’es  for  Cl are

upper bounded by thoscjor Cz:

1. maxin)u7n state complcxiiy: S,nax (c, ) < Srnax(cz)

3 .  iotalvcrlicrs: V(C1)<V(CZ)

//. iotalcdgcs: E(C1)~E(CZ)

Proofi lllcqllaliticsl  -d fo]]owi  llllncdiatelyf  ro]lltllede  fi~~itio~~s. ltrc~llaillst  osl~o\vtl  latfif(Cl)~

Jf(cz). Fronl( 16),

11

A4=  ~~1’iq”~ :gr~q
k–j,  –p_, _  k–l—q hq

–ftq - P-- I

t—l 2—1 i=l

Now ri = 1 in l)rcciscly tllc k places whercpi  is increlncntcd,  sothcnon~cro  valucsofriq-p’-’  arc

f4°,9-’ !...) g–(k–  l), which gives
k- 1

A4 = qk-1  >;q-~q-.f)(j
jzO

wllcrc ltj is tllc position of the ~th 1 in (r’], rz, . . . m). Uniforln comparability implies pi(CI ) z pi(C2),

tlIUS ]{j (Cz) < lt~ (C]), a n d

so

■

If two minimal trellises are not uniformly c.onll)arablc  (1 lcn the choice c)f the less complex t rcllis

]nay dc~)clld on which of the co~nplcxity  measures is used as the crlt,erion.

Uniform com~mrability is a very sirong  pro])criy  that is not guarantccxl to exist  bctwccn  auy two

imlliscs.  Our motivation for defining ii and studying its consequences lies in the correspondingly

strong  results obt,aincd for the problem of finding a minill]al  trellis ill the first place, i.e., fiudiug

tllc least complex trellis that, rcprcscnts  a fixed permutat ion of a fixed code. As sl)own  in ~7],

tl)c minilnal  trellis is uniforlnly  lCSS co]nplcx  at every stage and dcptll  tllall  any other trellis that

rcprcscnt,s the code.

Wc dcfiue four categories of best  and worst minimal trellises based 01) uniform colnparability:
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Dcfiniticnl  3 I’OT  a fixed code C, a permutation Z* and ill f corresponding minimal Ircl!is 7(Cn*)

arc

● uniformly Cff]cicnt i~ T(CT*)  ~ 7(C7r)  for all 7r E Sn

●  u]lifor]nly incfflc.icnlt if 7(C7r)  ~ 7(CT*)  for all n E S,, .

Kkfiniticm  4 An (n, k, d, dl ) code C“ and its corresponding minimal trellis 7 (C’) is

● uniformly c.ollc.isc if 7( C*) s T(C) for all (n, k, d, d*) codes C

● uuifor]nly  full if T(C)  ~ 7( C*) for all (n, k) codes C

If a minill]a] Lrcllis is uniformly cfflcicnt or uniforlnly  concise, wc can dro])  tl]c qualifier “lninimal’>

and refer to it simply as a uniformly efflcicnt trellis or a u]liformly concise trellis, rcspec.tivc]y.  As

shown  ]aicr  in ‘J’llcorcln  22, the two worst-case categories, ~lniformly incflicicllt  and uniformly  full,

turn out to bc equivalent.

‘J’hc inclusion of cl~ in the above definition elucidates syll)trmtries  that, are hidden  l)y consideration

of only n, k, and d. l’irst,  it prcsm-vcs dua]ity  relaiionshipsj  a~ we shall scc I)clow in ‘1’hcorcm 14.

%cond,  from a practical J)oint of view, d and d L have sylometric  ilnlJact o~l the potmitial  trellis

colll~)lcxity. ‘1’llcre also al)~)cars  to be a deep co~illcction bctwccn  d and dl for good codes: oftc)l

when d is large,  dL ]nust also be large, e.g., ihc extended 11 amining COCICS and  MI)S codes.

A dircc.t conscqucnlcc  of ‘J’llcorcm  1 is that Unifor~n  coll]parability  of codm and tllcir  duals arc

ccluiva]cnt:

1. A permutation # is uniformly eflicient for C if and only  if X* is uniformly eficienl for CL

2. A pcrmutaiion # is  uni formly ineflicicnt for C if and only if n“ is uniformly in eflicient for

c1 [14,  Y’llcoreltl 1 ] .

3. C“ is uniformly concise ij and only  if C*L is uniformly concise

~. C’ is uniformly full if and only if C*L is uniformly jill.

Ii} the NCX(  sections wc show that the trellis  complexity bounds derived ill Section 4.5 are met

exactly for the four categories of cxtrelnal  minimal trellises.

22



5.2 Best Permutations

‘1’hc  following theorem shows that uaiformly  cfllcient  trellises arc l,hosc  that acllicvc the 1)1,1’  hounds

in (21), (22), and ‘1’llcorc~n 10 with equality.

Thccmm  15 A pcrn~uiaiion n“ is uni~ornrly  cflicienf ~or a nondcgcncririe code C if and only if

C# meets the 1)1,1’ bounds (21) and (22) with equality, i.e.,

pi(CT*)  = Ki(C)  a n d  fi(Cm*) := K,,-i(C) ~or all i.

?Iis guarantees ihal Cx” Inccts ail oj ihe lower bounds  o?) complexi ty  (’28) - (33) with equal i ty .

Conversely, ijCn* meets any one ojthe lower bounds  (30) - (32) with ~qualziy, then  # is a uniformly

cflicicni pcrn)utaiion for C.

‘J’IIc proof of this  thcorc~u  is given in A1]pcndix 11.

‘J’hcorclu  15 shows that uuiforln]y cfflcicut pcrlnutatiolls, which arc defillcd  iu tcrlns  of t,rcllis

colnl)arability,  t,uru  out to be the same as “cfflcient,” [10] or “strictly  opti,,,u]n”  [14] ordcriugs  which

were dcfiucd iu tcr]us  of the 1)1,1’ bouuds.  Note that, a code may not, have a l)crmutation  that meets

tllcsc collditiolls.

A uniforlu]y cff)cicnt  pcrvnutation,  if it exists, is ]Jot ull~quc: If ~“ is uuiformly  cfflcicnt for C,

tllml so is Lhc rcwcrsc of n“, and ill fact, the nu]nbcr  of uuifcmnly cflicieilt }jcrlnutations  Iuust bc at

least as large as the auto~uorphism  group of the code. ‘1’llcrc may also bc diffcrcut  pcrmut,ations

that, arc uniformly  cfflcicnt aud produce distiuct hlSGMs  fcm the code.

Exampk  6 ‘llIIC followiug MSGMS produce uuiformly  cfficicnt. lniuilnal  trellises for the (8,4,4,4)

cxtcudcd  Ilalml)iug  code:

[

1 1 1 1 0 0 0 0

H

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0  ] 1 1 1
Olzzl loo’

1

olxzyy lo”
ool]~ylo 001 1 1 1 00

wllcrc ill each case x aud y cau bc assigucd arbitrarily, and z,v de]lotc tllc complement of x aud y

rcsl)cctivcly. ❑

l’;vcrl though uniformcfflcicncy  isavcry  strong properly torequircof  a trellis, there arcmauy

codes that have uniforluly  cfflc.icmt permutations. l“or exiilnple,  t,l]c standard permutation of any

llccd-Mullcr  codcisurliformly  cfflcicut [14, q’hcorcm 2]. Additional cxal]lp]csof  uuiformlycfflcicut

c.odes arc givcll iu Scctiou 5.3, which lists trellises that arc both  uuifor-ntly cfllcicut  and ur~iforrnly

concise.

Wc now iucludc  sorncthcoretical results that iulposcncccssary corlclitionsoa  uuiformlyefficicnt

l)crlnutatiolls.
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Tllcorcm  16 S u p p o s e  C is a code that has soync tiniformly cflicicni pcrmvtaiion n“. 77Lcn f o r

any  i,j such  that i +- j < 71,

lf~+.j(C)  ~ Ii’i(C)  + J~j(C).

l’roof:  Pi(Cm*)  and Ti(Cn* ) are disjoint suhcodes  of Cir*. Since n-j ~ i, -?~(CT*) Q T,, -j(C7r*),  S0

P~(Cm*) and F,l-j (Cm”) are disjoint subcodes  of CT’. Since ~“ is unifor)nly efficient for C, A’i(C) =

pi(Cm*) = din~(Pi(Cm*))  a n d  Kj(C)  =  fn_j(Cr*) =  dinl(F~-j(C~*)).  (;onsequcntly  ‘Pi(C~*) U

T,,_j(Cn*) is a lillcar  subcodc  of Cm” of dimension Ki(C) -I Kj(C)  and sul)])ort not cxcecding  i + j.

■

Thcmmn  17 If n“ is a uniformly eflicicni permutation for an (71, k, d, dl ) code C, i11c71 Cm” con-

iains codewords of the form XdO’L-d, On–dXd and CL~” co~iiains  codewords of lhc form XdLOn–dL,

(),, -dL~dL whew Oj dcuoics j consecutive zeros, ond X~ d{noles some scqucnre of j non. zero syn~-

bols  from G~’(q).

I’rOOfi  IJlliforlll ~f[icicllcy inlpli~s ~)~(C~*)  = ~f~(C) for all i, s o  f)d(C~*  ) ‘ ~~d(C) ~ 1, i . e . ,  Cm”

IIas  q – 1 codewords of weight d and support confined to tl)e first d positions, thus XdO”-d  E Cm”.

Silnilarly,  f,,-~(~m”) = k’d(~) = 1 establ ishes t}lat O“-d Xd E CT*. ‘] ’he rest follows bccausc,  fron)

‘1’llcorcm 14, n“ is uniformly cflicicnt for C if and oIIly  if it is ullifolnl]y  cflicicllt for Cl. ■

Corol lary 18 If C is a binary (n, k, d, d~) codr: ihat hos some uuifor?nly  cflicient p e r m u t a t i o n

7P, ihcn min(d,  dl-) must  bc CVC71.

Proofi 11’roln ‘J’hcorc]n  17, IdOn–d  E CT* and ldl O’’-d’ E C1m*, but  if lnill(d, d~) is odd then these

scqucmccs  cannot  bc orthogonal. ■

IIcrc arc some examples of sl)ccific codes which cannot, have a unifor~]]ly  efficient permutation,

according to tl]c IJrcccding ncccssary  conditions:

ExamIk  7 l,ct f3 bc the (3,1,3,2) re])ctition  code, and let C bc the direct sum code C = BaJBL.

‘lllICn C has 1)1,1’ {0 ,0 ,  1 ,2 ,2 ,2 ,3 }  so  ]{6(~)  < l(s(~) + lfs(~), hCnC.C by ‘J’hcorclll  16, C has I1O

uniformly cfficicnt permutation. As wc shall scc later, this code also has ncJ uniformly inefficient

permutation. o

Exmnl)lc  8 IIy Corollary 18, tlIc  (23, 12,7,8) Golay codt: has no uniforlllly  cfflcicnt permutation,

IIcithcr dots the (2’” – 1,2’” – ?71 – 1,3,2’”-1 ) 11 amming  code for any 77/ >3. ~onscqucnt]y,  no

IIont, rivial l)crfcct binary linear code has a unifornlly  cfflcic]lt pcrlnutatio]l. ❑

ExamlJc  9 ‘1’hc  (1 0,5,4,4) forlnally  self-dual code with gcncrat,or Illa~ rix

i

1000000111
0100010011
0010011001
0001011100
00001011 ]0
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10 ]f tlli~ ~od( ]las a Uniforlnly  efficient permutationIIas weight  cmumcrator  1 + 1 5X4 + 1 5X6 + x .

tllcll by ‘J’llcorcm  17 it, lnust  have two disjoint codewords of weight four, lIence it must also have a

codeword of weight 8. ]Iut  the weight enumerator rcvea]s that no such codeword exists. WC shall sec

in Scc.tiolI 5.3, however, that there is a (1 0,5,4,4) code that has a uniformly cfficicnt permutation. ❑

‘1’he same argument SIIOWS thal, i,hc (1 5,5,7,4) Il[;ll cocle has no uuiforlnly  efficient permutation.

Example 10 ‘J’lIc  (15,7,5,4) 11(;11  code dots not have a Ilniformly cfficicllt pcrlnutatiou, bccausc

this  c.odc dots IIot  llavc a lninimum  wcigllt, codeword WII(EC  supl]ort  contains  the support of a

~lliuill]u~n  wcigllt dual codeword. (rl’his  code is s~nal] cu(~ugh that t]lis fact can bc verified by

cxllaustivc  search.) ❑

‘J’hc prcccdiug examples show that many codes lack uniformly efhcicut  IJcrmutations.  Ilowcvcr,

for IIlally  such coclcs there exists some pcrmutatiwl that sillwltaneous]y  nliIlilnizes all of the trellis

colnl)lcxity  IIlcasurcs. l’or example ,  i f  C) and (?z arc two <Iiffcrcui coclcs wit]] uuiform]y cfficicnt

perltaltat,iollsj it, is IIot usually true ihai the direct su]n code Cl a) C2 has a uniformly cfficicnt

pcrlnut,a.tiou (e.g., code C of example 7), even thoug]l the co] rcspondiug  trellis 7 (Cl @ C2) cannot bc

ii]ll)rovcd ul)on according to ally of the conl])lcxity nleasures. ‘J’bus, it can bc argued that, 7(CI  0)(?2) is

cfllcicllt,  though  not uniformly so. Another example is the (7,4) IIalnuliug  code, which is sufficicnt]y

sll)all tllal- wc call verify by cxhaustlive search that there arc l)er~lmtatiolls  that arc optilna]  with

rcslJcct to all of the colnp]cxity  measures despite not being uuiformly  cf(icicnt.

For self-dual codes, “1’hcorcm  3 tells us that there  is always a single permutation that, simultanc-

ous]y IIli]lilllizcs J;,  V, aud f14. We suspccl  that not every coclr has a per]uutatio]l  that simultancous]y

IIlillilllizcs  all of the conl})lcxity  lncasurcs,  though wc do not yet know of an example that collfirlns

this  colljccturc.

5.3 Best Codes

Uniformly concise codes arc optimum in a rather strong scIlsc. iVot only do they have an c~cicnt

l)crnnltation}  but t,hcy also minimize all of t}lc trellis com],lexity  rnca.surcs  c.omparcd  to all codes

witlll tl)c same paralllctcrs, ‘J’hc following theoreln  shows that COCICS  that acllicvc the hounds in

‘1’hcorclns  9 and 11 with equality arc uniforlnly  co~lcisc.

Thocmcnn 1 9  An (n, k, d, d~ ) COdc C* is unijorwdy  co IIcisc ij the  dinlcnsions oj its p a s t  a n d

jutum suhcodcs meet the bounds  in Theorem 9 wiih equality, i.e.,

pi(C*) = ~i(n, k,d, dl) and  ji(C*) = j~n. i(n, k,djdl) jor all i.

in this case C* 7ncets  all oj the lower boull ds on complcxiiy (9~)  - (39) wit), equality. Cowverscly,  if

7 (C*) n~ccis any oj the bounds (36) through (38) with cqualily, ihen C* is unijormly concise.

25



WC sus})cct  I,llai a code can be uniformly concise without mcct,ing  the bounds of ‘1’hcorem 9 with

equality.

‘1’able 2 lists  known  unifor]nly concise binary codes. In each case, tllc coll]p]cxity values list,cd

arc t,hc lowest ]jossihlc for any code with the salne paralnetc,rs.  lro]n ‘J’llcorcn)  14, i,hc dual of each

code is also uniformly concise. Gcl]erator  matrices for ]nany of these codes are given in Appendix C.

All of tlIc rate ~ codes in the table arc either self-c]ual, or l]:IVC duals that arc pcrvnutcd versions of

the original COCIC.

‘1’lIc  first cni,ry in i,he table comes from applying the 1)1,1’  properties to sornc of the ~ninilna] span

codes disc. usscd in Section 4.2. ‘1’hcse  codes all IIavc dimension k ~ 3 and illcludc  the (?l, 1, 71,2)

rc])ctition  codes. Since lninilnal  span codes minimize c, every minimal sl)a~l code is either uniformly

concise, or llo ul)iforlnly concise code exists wit])  tile same l)aralncicrs.  WC shall sec in ]’;xalnplc 11

l,llat l]ot all lninimal  span coclcs arc uniformly concise.

‘1’lIc secollcl entry in ‘1’ab]e  2 follows from ‘1’hec,rcrn 20 l~clow.  ‘1’hc remaining exanlples  arc ob-

tained  by discovering a column perlnutatioll that, meets the 111)1,1’. Unifc)rvnly cmcient  pcrmutatio]ls

fortllc (24,12,8,8) cxtcndcd  Golay code and the (32,16,8,8) second-order Reed-Mullcr codchavc

been rc~)ortcd  clscwllcrc [8, 14], and it is easy to verify by rcfcrencc  io tl)c table in [4] that, the

trellises for tl]csc permutations arc uniformly concise. ‘1’hc othcrcxalnplcs  have not bcc]l reported

elscwllcrc and are bricf]y  discussed here or in Appendix C. ‘1’hc last twocn(rics arcsomew]lat triv-

ial, since I,hcy arc direct-surns of ot,hcr uniformly concise codes. IIowcvcr-,  al~lJlying the direct-suln

construction) to uniformly concise codes does not always produce another- uniformly concise code.

‘1’hc (48,24,12,12) code with generator lnatrix given in Appendix C is uniforlnly  concise. ‘J’his

COCIC is all ol)t,i)nally permuted version of the (48,24, 12, 12) quadratic residue C.OCIC.

U]liforln  conciseness for first-order Reed-Mullcr codes and extended llaml,ling codes is established

ill the following theorem.

ThcoK]Iil 20 Ail(2''',lll+- 1,2'7'- 1,4)jrst-order ltecd-M/{llcr codcsalld i/, ciTduals,t  }/c(2''`,2  ''`-

nl-1,4,2’’’-1) cztclidcd llanttrlillgcodcs, arcultijorfrtlycolicisc.

Proof:  ‘]’his can bc proved using the exl)licit, GIIW  for first order lLccd-Mullcr codes derived by

Wci [32, ’1 ’hcorc]n  5] together with Lhcrcsult of Kasanli  ct. al. [14, ‘J’hcorc]n  2] that tllc standard

l)cr~ll~ltatio]  list lllifor]l~lye ~cicrlt. 'l'l~creslllt  forexte~l(ledl  lallllllil)g,c odcstllcl]f ollo\vsf ro~~ld~lality

(’1’l,corcrn  1 3). ■

‘J’llcrc arc also cxa~np]cs  of code parameters (n,k,  d,dl) for which no uniforlnly  concise trellis

call exist.

Extunplc 11 ‘1’he (9,4,3,2) minimal span code has 1)1,1’  {0,0,0,1,1,2,2,3,3,4}. If C is i,hc

direct su~n of tllc (6,3,3,3) shortened IIallmling  code, and the (3,1,3,2) rcl)ctitior~ code, then C

is a (9,4,3,2) code with superior 1)1,1’ {0,0,0,1,1,2,3,3,3,4} but larger  edge span length e. ‘1’his

l)rovcs that there is no (9,4,3,2) u~liformly concise c.odc. ❑
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IYoln  dcfiuitions  3 and ,4, clearly if CT” is unifor]nly concise thcvl rr” must be uniformly eflicicnt

for C.

Example  12 ‘1’he U])],]’ of any (6,3,2,2) code is {O, O, 1,2,2,2, 3}, but  we saw in example 7 that

this  }Jrofilc doesn’t satisfy the constraints of ‘J’heorem  16 for uuiformly eflicient  permutations. So no

SUCII  code has a ulliforlnly  cfhcient  ]mr~nutation,  hcncc ILO (6,3,2,2) code call be uniformly concise.

❑

Exam]dc  13 ‘J’here is no biuary  (18,9,6,6) uniformly concise cc~dc, (e.g., the quadratic residue

code with these paralncters). If there were SUCII a code, ‘1’licore~n 17 tlclls us that z 816012 nlllst

bc i]) tllc o])tilnal]y permuted code aud its dual. ‘J1hc Ul)l,l’ of auy (18,9,6,6) code begins with

{O, 0,0,0,0,0,1 ,1,1,2,.. .}, which is the bcgi~luing of tbc 1)1,1’  for tl,c quadratic residue code. ‘J’his

iml)lics rg = 1 for such a code, i.e., there ]nust be some codeword y whose s~)an ends in position

9. Now d = 6 i~n])lics lx 3 yl ~ 6 aud Iyl ~ 6, so y lnust  bc of the form X~1309 where X6 denotes

SO]]IC pcrlnutation of 130 3. ]Iut  ill this case, z and y arc not, orthogonal, corltradicting  tllc fact that

acc~. D

‘J’llk  argulnmlt  also shows that there is no bi)lary (n, 1, 2m, 27u) code that meets the U])),]’

boul]ds WIICI) k > 1 and m is odd, e.g., the (42, 21, 10, 10) quadratic residue code. ‘J’hc ‘R(r, m)

ltccd-Mullcr  codes when (m = 6, r = 2, 3), (m := 7, r = 2,3,4) are also codes that do not meet

tl]c 111)1,1’  bounds. ‘J’his  is established by comlJaring the U1)I,P bounds  to tl]c kuown  optilnal

l)crlnut,atiol)s  for the ltccd-h4ullcr  codes.

ILcsults SUC.11 as the cxa~n])lcs  above and ‘J’hcormns  16 slid 17 illustrate that iu lnauy  instances

the U 1)1,1’ bou]]ds on com})lexity  arc not tight,. Au area c,f further research k to produce tighter

bounds ol~ trellis complexity based 011 the code parameters (n, k, d, d~ ).

5.4 Worst Minimal Trellises

‘1’hc following t,hcorclns show that uniforlnly  inefficient and uniformly full lninimal  trellises are tbc

same as the trellises that achieve the 1,1)1,1) bouuds  with eclua]ity.

Thcmrcun 21 An (n, k) code C is uni formly  full if and only ij Ihc  din~cnsions  of the past a n d

fulur-c subcodes of C meet ihe b o u n d s  (23), (2~) wiih equaliiy, i.e.,

pi(C) = max(O,k  – 71 + i) and f~(C)  = nlax(O,  k -- i) for all i.

in this case C rnccis  ail of ihe upper bounds on colnpleriiy (40) - (45) u,ith equality. Conversely, i f

C Inecls any  onc of the uyper bounds (42) - (44)  with cqualily, ihcn C is uni formly ful l .

T1~mJrcm]  22 A minilnal trellis 7( C7r*) is uniformly jull if and only if n“ is a uni~ormly  incfi-

cicnl prrmulation of C.
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Proof:  If C is k-climcnsional,  any generator l~latrix for C l,as k linearly illclcpcuclcnt  columns. ljct

r] and 7r2 be two pcrmutat,ions  which place k indclmndcnt  columns in tllc first and last k positions,

rcsl)cctivcly.  “J’hcn p~(C7r2) = max(O,  k – n + i) arid j~(CTj ) = max(O,  k .- i), i.e., 7rz achicvcs the

1,1)1,1’ bouud  on the past subcodc  dimensions, and rrl achicvcs it for the future subcode  dimcnsious.

]f n“ is uniformly incfllcicnt,  then  pi(C~*) s pi(Cm2)  and j, (Cm”) s .f~(Cnl ), i.e., n-* must achicvc

the 1,111,1’ bounds on both the past and the future. ‘1’bus, a trellis is ul)iforlnly incfflcicnt if and

oIIly if both the first k columns and last k colunlns  of tht corrcspondiug  generator matric.cs arc

liucarly  indcpcndcnt.  ‘1’his proves that a uniformly incfficicllt mini~]ial  trellis is also uniformly full.

‘1’I)c rcvcrsc  implication is trivial. ■

Many codes have uniformly incff)cieut trellises iu their standard I)cnllulations.  k’or  example, the

~niuimal trellises for all cyclic., extended cyclic, and shortened cyclic codes are uuiformly  inefficient

[15, 20]. IIowcver, not every code has a uniformly inc~cicnt permutation, e.g., code C of example 7.

Additional examples of uniformly incfIicient trellises are given ill the following two theorems.

Tllcormn  23 A self-duo! code always has a unijormly ineflicicut pcrn)utation

Proofl IIy ‘Ilcorem 2, any (2k, k) self-dual code has k stages of sim})le cxl)ansions  and k stages

of sim])lc  mergers. ‘1’hc k columns of the generator matrix corrcspondiug  to t}lc expansion stages

forln a linearly indepcndel)t  set, as do the k COIUUNIS  corresl]onding  to the IIlerger  stages. ‘1’herefore,

any perlnutation which groups all k of the cxpansiou  columus followed by all k of the merger columns

is uuiforlnly  illefhcicnt. ■

Thcormn  24 l! and only if a code is niaximuln  disianc( separable (MII,9),  every permutation z

is uniformly incflicient and the corresponding ireilis  contplcriiy  mcasur<s equal the upper bounds in

(~o) - (45).

‘1’his theoreln  follows from the fact that a code is maximum dista~lce separable if and only if

every subset of k columns of its generator matrix is linearly independent. A peculiar consequence

of ‘1’hcorc~u 24 is that, every permutation of an M 1)S code is also uuiforiuly  e~cicntl as noted by

l’orney [1 O]. ‘1’his observation emp]lasizes  that uniform efllcicucy is c)nly a relative measure of trellis

colnl)]exity.

6 Conclusion

IU this  pal)er  wc have attacked the trellis complexity problc[n by first considering tile minimal span

generator matrix for a fixed permutation of a code. McEliece  [27] snowed that the so-called minimal

trellis iudecd ]ninimizes  not only the maximum state dimension of the trellis but also a W11OIC gamut

of complexity Incasurcs. II crc wc have augmented the list of reasouablc  co]lll)lcxity ~neasures  and



int,crrc]atcd  than. Wc have also illustrated the connection between the comrjlexity  Ineasurcs  and

tl]c four prilnitive  strwcturcs  of a minimal trellis for a nondcgencrat,e  code.

‘1’hc trellis c.oln])lcxity analysis for a fixed code gencralizt:s  natu]  ally to sin)ilar  results for c.odes

allowed to vary over a domain of optimization. WC idcntifie(l two useful do]naills, the set of pcrlnu-

tations of a given code ancl the set c)f all codes with given code para]ncters.  Within  each dolnairl we

dcfillcd uniforlnly  best and worst minimal trellises that arc guaranteed to sirrlultancous]y  ~nillilllizc

or ~naxiluizc  all of the coml)lcxity  lncasurcs.  Wc showed that it is easy to .gcllcralizc  the bounds on

lnaxi~nu~n  si,atc complcxit,y  derived by other authors from the di~~~cr}siol~/lcI~gtll profile of a code

to siltlilar  bounds on all the complexity measures over each opti~nization  do]riaiu. lurthcr~uorc,  if

a lnillilllal  trellis  attains the bounds for some of the conq)]cxity Incasurcs, it must  necessarily be

uniformly cxtrcmal,  but this is not true for the simpler ~ncasurcs  of maxinmlt)  state or edge dimen-

sion collsidcrcd  by ot,hcr authors . ‘1’his ]cnds furtllcr  credelice to tlic argurncnt  that a measure of

total colllp]cxity  (such M the total number  of edges) is more useful thwl  a Incasure  of maximum

c.oln~)lcxity [27].

ll]llikc  tl]c c.asc of a fixed pcrmrrtation  of a given code, u~liformly l)cst arid worst minimal trellises

are not guara]ltccd  to exist within the larger domains of o~)timization.  IIowcvcrj  wc dc~nollstratcd

tile uscfu]ucss of the concepts by presenting several cxa~np]cs of uniformly best trellises, most IIotably

tllc optilnum  })crnmtation  of the (48,24) quadratic residue code, hcrctoforc  u]lknown. Conversely,

by dcrivillg  SOIIW )Icccssary existcnc.c  conditions, we also idfntificd  SO]]](  cases for w]lich unifor)nly

cxhmnal  lninima] trcllism  c.auuot, exist.

Wc dcvclopcd a series of useful relationships bctwcc]l the trellis conl~)lcxity of a code and that of

its dual, again ill a natural ~)rogrcssion  first fro~u a fixed COCI(  and then to larger  COCIC domains. ‘J’his

aljl)roacll yields lnany of the salnc rcsu]ts  obtained by other authors for cli~llcl~sioll/lellgtll profiles or

gcncralizcd  II arnlning  weights, but it crnphasizcs  that all th( duality results stcru from fundamental

lniuirnal  trellis rclat,ionsllil)s valid for a fixed permutation of a code. lU fact, we have argued that, the

sylll)llctry  of the constraints ilnposcd  by the code and its dual on trellis conll)lcxity  is so fundamental

that tl]c ]niuimurn  distance of the dual code should I)c included as ouc of i,llc iltt rillsic code parameters

tl]at ]il])its acllicvablc  colnp]cxity. ‘J’he duality relationshilw  lead to intcrcstil)g  councctions  among

several of tllc conll)lcxity  measures for the special case of self-dual codes.

Appendices

A Direct Sum Codes

Definition 5 (Direct Sum Cocks) /24, p. 76] lf~l and  [:2 arc (?II, kI, d,, d} ) and (?Iz, kz, dz,  d+)

linear block c o d e s  rcspcciively, then  the d i r e c t  s u m  c o d e  C  ( d e n o t e d  C z Cl @ C2) is lhc set oj
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a!l codculords o f  ihc form c1 [C2 (i. c . ,  c1 folloumd by C2) Idlcrc c1 E Cl a n d  C2  E C2. C i s  an

(nl + n2, kl + k2,  min(d~ , d2),  min(d~, d; ) )  l inear  block cod(. We refer  to Cl and C2 as co~nl)oueut

codes of C. l)imct sum codrs of more than  IU)O c o d e s  a r c  de~ined in i}Le  o b v i o u s  manner.

]{’or dirccl  sum COCICS, the 1)1,1’  can be computed frolu tllc 1)1,1’s of its co]))  poncmt codes iu the

following ]t]allllcr.

Ki (C)  = max Kn, (CI ) -t li’i –,7, (C2 )
?nE[o,  i]

Wh crc  U)C interpret  lij (B) to cgua~ dim(l?) when  j cmcecds t}l c length  of code B.

Proofi l,c( Q dc]Iotc the  liucar subcodc  of C associated wiih A’i(C).  Sillcc C is a direct SUIU code,

Q == QI a) G, f o r  SOInC s~l~)codes t21 s G, G c G. ~’hen  Jfi(C) =  dinl(~) =- di~n(Ql) +  diI~l(L22)

a u d  SUPI)(Q)  = supp(Q1 ) + supp(Q2) < i. IJcttiug  ?n == SU])I)(Q1),  c lear ly  wc nlaxitnizc dim(Q)  if

diln(Q1 ) = Ji’,,i(C1),  SUp1J(Q2)  < i –- 771, and dim(Q2)  = ]<i _ ,,i(C2). ■

‘1’hc  dcfinitioli  of ulliforln cfhcicncy has I,hc desirable prol,erty  that,, if 7 (C) is uuiforlnly  cfflcicnt,

tl)en tl)c ~niuimal trellis for the direct  sum of C with itself, 7 (C a] C), is also uniformly cficicut.

B Proof of Theorem 1 5

Proofi  l$or cacll O s i s n, wc can always find pcrmutat ions TP, ~J SUCh that W(CTP)  n ~~i(~)

a u d  f~(C7rj)  = K,l-~(C). IIy  definition, if n“ is uniformly efflcicllt  thc]l 7( C7r*) ~ 7( C7rP)  and

7( C7r*) s 7 (Cm,), so pi(Cm*)  ~ Ki((?)  and fi(Cm*) > K,,_i(C). ‘1’his c.ombi]lcd  with (21) and (22)

l)rovcs tl}c first stat, mncnt.

If Cm” is ulliforvnly Wicicnt  then  by the above argument clearly Cm” meets (28) - (33) with

equality, so it rc~llaills only to show the converse for (30) - (32). If Cm”  Itmcts (32) then for each

1 < i s n, citllcr  (a) Ci = O or (b) pi_l  ,= A’i_l (C) and fi = if,,_.j(C), If (a) occurs thcu  C is

noudcgcncrate,  so @) Inust  hold cvcrywhcrc,  hcuce T* is u~I iforlnly  cfficicllt for C.

If Cm” meets  (30) or (31) t,hcn for each O < i < n cit IIcr (a) vi = () or (b) pi == Ii’i(C) a n d

fi = K,,-i(C). We have just established that if (1)) holds for all O < i < n i]lcu n“ is uniformly

cffic.icl)tl  for C. Wc will now shdw that whenever (a) holds, (b) must  also lIold. If (a) occurs at, one

or ~nore dc~)tlls, the]] CT* is a clircc.t sum code alld every d~:pt,h  i where vi = O ]narks a boundary

bct,wccl) co]nl)o]lcnt codes. I,ct the first of the component COCICS  bc denoted I)y ,!?, au (nt<, kl?, dlz, d~ )

code. l’or all i < nfz, pi(f?) = pi(CT*) = Iii(C) > A’i(fi).  ]]ut from (21), pi(f;)  < Ki(l?),  so

Ki (q =: pi(f?). (46)
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(L?) thus j-,(l?) >Sll])ilarly,  for all 1 < n~+, .fi(l?) + k — kLz = .fi(C7r*) = Afl-i (C)  > k — AH -t lftlf+—~

K,l,, _~(l?). IJut froln (22), j~(.l?) ~ KnB_~(B), tbercforw

If,, B-i(l?)  = j-i(l?). (47)

l’;quatio]ls  (46) and (47) eslablisb  that 7(1?) is uniformdy  eflicient. ‘1’llis~)rcjccclllreca~l  be repeated

fortllcotlllcr component codcsin C7r*.

Sillc.c Cm” (and by ilnl)lication  also ~) is  assu~llcd to b( nondcgencrai,c,  dL< > 1, d~ > 1, a n d

~~L3 > ] so dc})t]l !~L; – ] cannot bc a. boundary between c<~mponcllt  codes, i.e., (b) holds at this

depth , fhUS

~{,, E_,(C)  = &_~(C~*) = ~)nfi..~(f~) = ~~~~-~(~?)  == kL{  – ].

‘Ibis last quality follows fro]n (26). Since tbe 1)1,1’ is illcrcrncnted  by I1O IIlore  than one unit each

tilnc  index,

~f,lH(C)~~{,lH-.~(C)+  ~ = kL,.

Also ~{,,n(C)  ~f),,K(Cm*)  =kL~, tllcrefore~ <,,,,(C)= kB= ~,,,, (C~*).  Asimilara rgumcntestablishcs

that h’,l_,lN (C) = k–kL~  = jn~(Cn*),  so @) holds al depth ?lL<. Rcpeatitlg  this at each boundary

between c.olnl)oncnt  codcscstablisllm tbat (b) holdsat allilldiccshcncc m“ is uniformly cfllcicntl  for

c. 9

C Some Uniformly Concise Codes

in this al)l)clldix wc give minimal span generator matrices for several ul, iforln]y  concise codes in

tl]cir ol)tilnal  l)erlnutatiolls. Since C is unifornlly  concise if and only if its dual is, in eac}l case wc

give the gcllcrator  ~Ilatrix for the s]naller  of C and Cl.

II;xaml)lc  9 sl)owcd a (10,5,4 ,4) forlnal]y self-dual code that was ]Iot cvc]l uniformly efflcicnt.

Allotllcr  forlllally  self-dua] (10,5,4,4) code bas MSGM

[1
1111000000
0011110000
0000111100
0000001111
0101101010

and is ul]iforln]y concise. ‘ll~isi saquasi-cycli c[24,p. 506] codcwitb wcip;llt c]lurncrator  I+10x4+

16x5 +- 5X8.
Otllcr  ul]iformly concise codcsincludc a(12,6,4,4) forma lly self-dual code:

111100000000
001111000000
000011110000
000000111100
000000001111
0101]0101010
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a (16,4,8,2) code:

[#lnE)

(this MSGM ca~l hc obtaiucd  by dclctiug  a row froln the h4SGM  for tlic (1 6,5,8,4) first-order Ikcd-
Mul]cr code), a (20,6,8,4) code:

a (24,7,8,4) code:

a (24,8,8,4) code:

11111111000000000000
00001111111100000000
00000000111111110000
00000000000011111111
00110011110011001100
01010101101010101010

111111110000000000000000
000011111111000000000000
000000001111111100000000
000000000000111111110000
0000000000000000] 1111111
001100111100110011001100
010101011010101010101010

1 I
111111110000000000000000
000011111111000000000000
000000001111111100000000
000000000000111111110000
000000000000000011111111
001100111010110011001100
010101011100101000000000
000000000011010110101010

aud a (40,7,16,4) c.ode:

111111111111111 1000000000000000000000000
0000000011111111 111111110000000000000000
00000000000000001 11111111111111100000000
0000000000000000000000001 111111]11111111
000011110000111111110000111100001 1110000
00110011001100]111001100110011001 1001100
0101010101010101101010101010101010101010

]’iually, llcrc is an optionally pcnmrtccl  gencratcm  ~natrix  for i,hc (48,24,1 2,12) self-dual quadratic
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rcsicluc! Coclc:
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Figure Captions

Figure 1. A lninimal t,rcllis  for the (6,3,3) shortened IIamming  code,

Vigurc  2. hlinilna]  trellises (a) 7(CI)  and 7(C: ) (Cl is self-clual), (b) 7(C2),  (c) T(C~).

Figure 3. An edge dimension profile that minimizes I; subject to a co~lstraint  on total edge span c.

l“igure 4. 1)1,1’ bounds for a (48,24,12) self-dual code.

‘1’able 1. l)ual  IJrimitive structures.

‘J’ab]c  2. So]l)c  known unifor]nly  concise binary codes. Codes arc grouped with their duals, which arc

also uniformly collcisc. II;xprcssions  too big to fit, into the t,al)le: (a) @~i~f?~ -– 4, (b) ~2= –

3(2’’’-]) –2, (C) ‘22”’+;  +25 ~ -4-3( 2’’’+  1), (d) ~m~-+~~  -3(2’’’ -’) -2, (C) j2fl+~-9(2’’’-1)-  1.

Colll})lcxity  cx])rcssions for first order ltccd-Mullcr  .aI)d  cxtc~ldcd  llalnmi~lg codes arc valid for m ~ 3,

Cxcc])t C,,, ax = 3 Wbcn ?1/ = 3
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